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Forbidden electronic transitions are often weakly allowed through vibronic 
coupling to normal modes of the molecule. In transition metal complexes, the 
first order strong coupling appears in many cases to select specifically one of 
the available asymmetric modes. In this work the Intermediate Ligand Field 
model has been extended to vibronic coupling. The basis functions and tensor 
operators are described as species subduced from the vibronic generative 
group SU(3) which results from the diagonal restriction of the direct product of 
the electronic generative group SU(2) with the three dimensional harmonic 
oscillator group SU(3). This model implies that transitions between strongly 
coupled bases are permitted only through an overall octupole operator. All 
lower multipoles are forbidden and in particular the dipole is eliminated by the 
requirement for a translationally invariant centre of mass. The model permits 
any combination of multipole operators for separate electronic and vibrational 
transitions which result in the overall octupole. This theory is applied to two 
cases of d 3 complex spectra. It provides an unambiguous assignment of the 
4A2g-4T2g transition in the absorption spectrum of solid [MnF6] 4- and of the 
MCD spectrum of the 4A2g-(2Tlg, 4T2g ) region in [Cr(H20)6] 3+. In the latter 
complex, the observed exclusive coupling of the 2Tlg state to h ,  (stretch) and 
the 4T2g state to tlu (twist) is predicted by the model. 

Key words: Vibronic transitions - Metal complexes - Intermediate Ligand 
Field model. 

I. Introduct ion 

Most spectra of transition metal complexes provide evidence in some form of 
coupling of d-d transitions with vibrations in the first coordination sphere of 
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atoms. In both absorption and emission spectra, resolved vibronic structures are 
often visible [1] but even in the case of unresolved bands, thermal studies reveal 
the presence of the same mechanism. Demonstrating the number and identity of 
the normal modes involved however is often quite difficult. The main criterion is 
usually comparison of observed separation energies with ground state normal 
modes but the differences in frequency are often so large as to make this 
comparison quite tenuous. In systems of low symmetry, static polarization and 
magnetic circular dichroism spectra [2, 3, 4, 5] can provide useful data concerning 
both degeneracy and orientation of the activating normal mode. In the highest 
symmetries including oetahedral and tetrahedral complexes, the allowed modes 
are triply degenerate and of known orientation. 

Several carefully analysed spectra [5, 6] suggest that not all the available modes 
participate in vibronic coupling and in some cases one mode may appear strongly 
in a progression to the exclusion of other modes of the same point group 
representation. This phenomenon is clearly evident in spectra of classical octa- 
hedral complexes in which progressions in one of the two available tl,  modes are 
observed on individual d-d transitions [7]. Selection rules employing only finite 
grgup representations cannot be used to predict these situations since the number 
of finite group labels for basis functions is too restricted to quantitatively describe 
the orthonormality conditions of the normal modes. The problem is often 
circumvented by adding some non group theoretic subscript or superscript to 
distinguish the basis functions but this does not facilitate the identification of 
selection rules nor aid in evaluation of matrix elements. 

The strength of these selection rules suggests that the metal complex could be 
treated as a perturbed variant of a more symmetric system in which the normal 
modes bear unique group theoretic representations. Similar techniques are 
currently used to rationalize the observed electronic transitions in d-d systems 
[8, 9, 10]. In the purely electronic problem the finite group bases are regarded as 
projections of the bases of spherical ions. This permits the use of an augmented set 
of group theoretic labels from the infinite group SU(2) which in most cases of 
interest uniquely identify each basis function in the set. Unambiguous selection 
rules can then be used to calculate matrix elements of both the Hamiltonian and 
other multipole operators. 

In this work a similar appeal to higher symmetry is made to provide a unique 
taxonomy of normal modes which may then be coupled to electronic transitions. 
The resulting model will be used to analyse two octahedral d 3 complexes which 
provide examples of strong selection of different tl~ modes for different d-d 
origins. These complexes of early transition metal ions provide particularly clear 
examples of vibronic coupling because the spin-orbit coupling is an order of 
magnitude smaller and the spinor manifold splittings do not interfere in first order 
with the vibronic progressions. 

2. Experimental 

A sample of 6.70 g of high purity chromium perchlorate Cr(CIO4). 36H20 
(M.W. -- 899) was dissolved in 100 ml of distilled water. The absorption spectrum 
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obtained on a Cary 14 spectrophotometer displayed band centres identical with 
previous values [5]. The optical densities of the two visible bands at 298 K were 
0.97 and 1.16, reproducing very closely the previously observed ratio [5]. The 
magnetic circular dichroism spectra were obtained on a fully automated, custom 
built MCD spectrophotometer described earlier [11] using the driving routine 
MONITOR. This programme is designed to acquire data by a digital scan of  the 
spectral region of interest. At a given spectral energy the scan halts and data are 
acquired over a predetermined period. The number of data readings is controlled 
directly by the standard deviation on the previous cycle. The difference between 
current and previous means is used to control the size of the next energy step. Scan 
energy, data mean and standard deviation are stored for subsequent plotting and 
processing. In operating this way the data are obtained at a constant level of 
quality throughout the scan range in the shortest possible time. For the present 
spectrum at a slit of 0.1 mm the scan rate was 5 cm-1/sec with an average of 30 
readings/sec. Baseline correction of these M.C.D. spectra was carried out with the 
routine MERGE.  

The MCD spectrum of the red band was deconvoluted using a least squares 
fitting routine MCDFIT which is very similar to programmes used by several 
authors for treatment of absorption, emission and MCD data. The conditions of 
the fit are discussed below. 

3. Results 

Two sets of results will be considered a s  d 3 examples for analysis, a low 
temperature, highly resolved single crystal absorption spectrum of the 4A2 ~ 47"2 
transition in CszMnF6 [7] and the solution MCD spectrum of the same transition 
in Cr(H20)63+ obtained in this work. The results of direct observation of absorp- 
tion peaks are given in Table 1 and of deconvolution of the MCD spectrum are 
given in Table 2. 

The absorption spectrum of the [MnF6] 2- chromophore (Fig. 1) shows a highly 
resolved series of peaks usually split further into three shoulders. The separation 
of the main series of seven peaks is consistently 490-510 cm -1 while the manifold 
splitting within each peak is approximately 200 cm -1. The former series cor- 
responds closely to the lower energy of two fundamental transitions observed in 
the infrared spectrum [7] of this species (Fig. 2) which occurs as a broad intense 

T a b l e  1 .  4 . Observed band centres on Tzg progression 
Band symbol Energy at band centre 

1 
2 2 0 8 5 0  
3 21 350 
4 21 850 
5 22 360 
6 22 860 
7 23 365 
8 2 3 9 0 0  



48 B.R. Hollebone 

O.D. 

0 5  

r " I 

20.0 21.0 

I 2 
i '  ' ' I 

3 4 5 6 7 8 
I " I i i i '  | 

1 1 
i , , , I  , I  

22.0 23,0 24,0 
E ( k K )  

Fig, 1. Absorption spectrum of 4A2g ~ 4T:g band in CsMnF6 at 80 K (adapted from Ref. 7) 
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Fig, 2. Infrared spectrum of solid K2MnF6 
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shoulder at approximately 480 cm -1. The higher energy fundamental mode 
occurs at about 620 cm -1. These two bands can be assigned, by analogy with many 
octahedral species [5, 12, 13] as the lower energy tau (twist) and the higher energy 
t, ,  (antisymmetric stretch). It thus appears that the 4A2o-~4T2o transition is 
principally enhanced by the t,u (twist) mode and the tl,  (stretch) is considerably 
less important. It is also useful to note that after Franck-Condon consideration 
there is an alternation of intensities in successive vibronic bands in the progres- 
sion. The splitting of each vibronic band corresponds to the expected first order 
spinor splitting of the 4T2g state with a spin-orbit coupling constant near 80 cm -a 
[7]. This splitting is small compared to the vibronic coupling and renders the 
spectrum relatively simple in first order. 

The MCD spectrum of the corresponding band in Cr(H20)63+ (Fig. 3) is less well 
resolved but provides greater structural detail than is visible in the absorption 
spectrum of this transition. It is more involved than the absorption spectrum of 
MnF62- because a 4A2g -~ 2T~g transition lies just below the transition of interest 
and could overlap some of its low energy features. The results which are given in 
Table 2 were obtained using a number of criteria designed to produce the simplest 
reasonable fit. Since these criteria are rigid and essential to understanding Table 2, 
they are considered in some detail here. 

The considerable evidence that the band is essentially vibronic in origin, and that 
the derivative shaped A terms are completely masked by the C terms has been 
fully presented [5]. Initially only one fundamental vibration interval was 
employed in the deconvolution. In this approximation the spectrum was resolved 
into a set of bands of equal width spaced at equal intervals which represent 
successive vibrational quanta, Within these criteria the choice of band separation, 
type and width was required. The band type depends largely on the physical state 
of the molecule and for room temperature spectra of dissolved complexes a 
Gaussian shape has been found most suitable [14]. This is confirmed in the present 
case by the very close fit of a single Gaussian band on the sharp, isolated C term of 
the adjacent doublet state. The choice of the band separation and width is less 
certain but the two cannot be chosen independently. It is probably easier to 
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Fig. 3. MCD spectrum of 4A2g-~ (2Ttg , '*T2g ) band in aqueous [Cr(H20)6] 3+ at 295 K ( - )  with final 
deconvolution assignments and comparison with fitted spectrum ( - - - )  
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Table 2. Deconvoluted band characteristics a of [Cr(H20)6] 3+ 

B. R. Hollebone 

Energy Rotational strength 
Band symbol [cm -1] [0]M x 104 

Progression on 2Tlgterm 
A 15 900 1.368 
B 16 345 0.201 
C 16 775 0.510 

Progression on 4T2gterm 
1 16 410 0.203 
2 16 700 0.223 
3 16 980 0.725 
4 17 240 0.955 
5 17 510 1.003 
6 17 760 0.900 
7 18 020 0.915 
8 18 280 0.625 
9 18 545 0.662 

10 18 820 0.375 
11 19 080 0.326 
12 19 350 0.176 
13 19 630 0.028 

a Band width is 350 cm 1 throughout both progressions 

estimate an appropriate band width than band separation for two reasons. First, 
the chosen band width must yield a curve shape capable of following the most 
rapid change of intensity observed in the envelope. In fact, this requirement places 
severe restrictions on the range of available band widths. Second, the chosen band 
width should be consistent with known broadening perturbations. As seen in the 
previous case, the most important of these interactions is spin-orbit splitting of the 
spinor manifold of the 4T2g(F) term. In the present case the spin-orbit coupling 
constant is A = 55 cm - t  [15], yielding a total splitting of the four spinor states E', 
E", 2U'  of approximately 200 cm -1. By using the first criterion to dictate the 
maximum width and the second the minimum, a band width of 350 cm -1 was 
chosen as the best approximation. 

The chosen shape and band width was used together with the requirement of a 
regular spacing of bands to achieve the best fit of the observed MCD spectrum of 
the 4T2g term. The best quality of fit was achieved with a spacing of 270 cm -1 + 
10 cm -1. The average deviation of the fit to any experimental point was less than 
2.3% of the maximum observed rotational strength compared to an experimental 
precision of approximately 1.5%. This separation is close to the observed tlu 
(twist) mode expected by analogy with [Al(H20)6] 3+ for the ground state at 
approximately 280 cm -1 

The major contributions to this fitting error occurred in two regions at 16 350 and 
16 800 cm -~. By broadening the fit region to include a fit of the sharp 2T~g 
transition at 15 900 and including two further C terms at the unfitted regions, an 
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improvement  in quality of fit to 1.9 % was achieved. It seems clear that these three 
additional bands represent a progression on the 2Tlg transition with a spacing of 
440+ 10 cm -1. This spacing is close to the tl~ (stretch) mode observed in the 

-1 ground state at 490 cm 

The final refinement of this fit is shown in Fig. 3. The average error is close to the 
experimental precision but more importantly all observable features are accoun- 
ted for in the deconvolution. In addition to identification of band centres in both 
progressions, the fitting has again revealed an intensity alternation in the t l ,  
(twist) progression on the 4T2g term. This provides strong confirmation of the 
deconvolution. Odd numbered bands in the series shown in Fig, 3 appear to have 
distinctly greater rotational strength than the even numbered bands after taking 
into account the fact that band 5 probably represents the largest Franck-Condon 
factor in the series. While fewer bands were observable, the same alternation 
effect also appears in the t~, (stretch) progression on the 2T~ term. The final data 
fit also suggests that the two vibronic progressions do not mix to first order. Using 
the assumption that the two independent progressions show no anharmonicity 
due to off-diagonal interactions, a fit is obtained close to the experimental error 
which could not be significantly improved by introduction of anharmonic 
behaviour. 

4. Discussion 

4.1. Transition Intensity Theory 

(i) The Taxonomy of Basis and Operator Vectors. The appearance of band 
progressions with separations corresponding closely to tlu fundamentals of the 
ground state suggest that a strong coupling vibronic model is appropriate for a 
study of transition intensities. There is no clear evidence in the two cases described 
here or in other analyses of similar systems that the weak coupling limit, resulting 
in progressions in the totally symmetric modes on one permitting odd quantum, is 
a useful approximation. In the strong coupling limit-the vibronic bases can be 
constructed as adiabatic Born-Oppenheimer  product functions [16]; 

I J> = qbm(q; Q)Am~(Q) (1) 

in which q and Q are the electronic and nuclear normal mode coordinates 
respectively. Both these functions can be represented as basis vectors identified by 
finite group representation and component  labels, [F,,ym ) [r~,o) for the electronic 
and normal mode bases respectively. 

In the strong coupling limit however, the angular momenta  implied in these 
vectors are not conserved. As in all strongly coupled systems, only the total 
momentum can be used to label states of the system so that the product functions 
become 

rr ror   ). (2) 
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Under these conditions, transition selection rules only apply directly to allowed- 
ness of changes in the total angular momentum implied in the coupled basis 
notation ]FT~/T) and hence to all of the non-vanishing couplings of IF.,-/,,> with 
I F~3'~ ) which yield a particular I rr~/T>. Thus for any transition between observable 
states of the strongly coupled vibronic system; 

t I 0 0 r '  +F '+ , , /~ -FO+FO+ ' , / *o§  + r  +3~* 

r-v-r~v~ 
r~r~r~o 

�9 A [ r g ] .  a [ r ~  �9 a[r ] 

, , o o rO [r  . [r" r~ rr~fr~ rv 
, , , ,  o 0 ~ , ~ * ) \ v m  v* } 

r ; 0 0 r t 0 0 
(r  ~,y ~ IF ~,,/~ ]F~',/m) �9 (3) 

This formulation of finite group selection rules does imply that only certain 
normal modes will couple with certain electronic states for any particular strongly 
coupled transition operator. It does not however provide a formalism for 
differentiation of orthonormal vibrational bases bearing identical represen- 
tations. 

The desired differentiation between such normal modes can be devised by appeal 
to a generative point group. This procedure is equivalent to one used to define the 
electronic bases in the Intermediate Ligand Field model [8, 9, 10]. Physically it 
corresponds to defining a body from which all normal modes in all symmetries of 
interest may be projected by standard hypergeometric algebra [17]. For the 
electronic functions, the basis vectors for molecules are projected out of the 
normal modes of the surface of a sphere which has the symmetry 0(3) [9]. It is 
usually convenient to include half-integer spin and use the expanded group SU(2). 
The equivalent body for projection of molecular normal mode vibrations appears 
to be the solid sphere, using the point group for the isotropic three dimensional 
harmonic oscillator U(3) [18], which can be restricted without loss of generality to 
SU(3). The vibrational bases in three dimensional finite groups may then be 
projected from the four dimensional representations of SU(3) [19]. 

The formulation of vibronic basis functions as products of electronic and vibra- 
tional bases corresponds to the formation of the outer product of the two groups; 
SU(2) • SU(3)~ SU(6). In this six dimensional system the vectors all remain 
orthonormal. In order to define the coupling between the electronic and vibra- 
tional bases the representations of the SU(6) group must be restricted to 
subspaces in which only the total angular momentum vector may exist. By analogy 
with the restriction which yields the total momentum J from the outer product of 
L and S, the vibronic states will be defined in the diagonal subgroup of SU(2) x 
SU(3) [20]. In fact this cannot be done directly but since SU(2) is a normal 
subgroup of SU(3) then the diagonal subgroup of interest may be obtained by a 
restriction of the product SU(3)• SU(3). The diagonal group defining the total 
vibronic vector is then simply SU(3) [21]. 
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This completes the inductive step necessary to define the generative groups for 
both vibrational and vibronic bases. By including representation labels from both 
the infinite generative group and the finite subgroup in the specification of these 
bases it is possible to distinguish uniquely between the different normal modes in 
most symmetries of interest. This distinctive taxonomy applies equally to the 
coupled bases, their related Hamiltonians and transition operators so that it is now 
possible to state selection rules unambiguously. 

(ii) Selection Rules for Subduced Strongly Coupled Vibronic States. Intermediate 
Ligand Field Theory [10] has provided a formalism for calculation of selection 
rules between electronic states in complexes. The technique can be adapted for 
either weakly or strongly coupled L and S vectors for the finite symmetries 
projected from the group SU(2). In this section an analogous formalism will be 
developed first for vibrational transitions (parallel to selection rules for L or S 
separately) and then extended to the case of strong coupling between electronic 
functions labelled by [L['LTL> and vibrational functions I VFv3"v>. 

For electronic transitions the predominant term in the multipole expansion of the 
transition operator is the dipole which for projected Oh symmetry is 

L~ ~176 _- I1 r l ,+ l [ .  (4) 

This term is allowed because a separation of positive and negative charge within a 
molecule does not translate the centre of charge. Subsequent terms also fulfil this 
criterion but are much smaller in magnitude. 

In contrast, although infrared transitions are usually attributed to a dipole [21] 
mechanism, internal modes of vibration are forbidden through the dipole opera- 
tor since translation of mass in a dipole causes translation of the centre of mass or 
rotation of the molecule. Thus six degrees of freedom (five for linear systems), 
corresponding to these dipole allowed motions are removed from the analysis of 
internal modes. The same considerations lead to neglect of the dipole transition 
operator for transitions between fluctuating density states in 3,-ray resonance 
spectroscopy of atomic nuclei [23]. 

The next term in the multipole expansion, the quadrupole, is equally unimportant 
since it does not provide an antisymmetric displacement of nuclear charge which 
can interact with photons. Thus, the first term which does provide the required 
antisymmetric charge displacement while not permitting motion of the centre of 
mass is the octupole. This essentially ungerade operator is in turn, orders of 
magnitude more effective than the gerade hexadecupole which has been postu- 
lated in the analysis of the circular dichroism of vibronic transitions [24]. Thus, to 
first order, the transition operator for vibrational modes of an Oh complex 
becomes; 

r r 0 1 r n 0  0 I v Iv3~vl = [3T1, • 11. (5) 

Since the generative point group of the strongly coupled vibronic bases is likewise 
SU(3) and since the same physical constraints which limit vibrational transitions 
must apply to those between vibronic states, the first important vibronic term is 
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(0, 3) 
(1, 2) 
(2, 1) 
(3, 0) 

i.e. 

again the octupole and can be written as; 
0 0 0 [D FDyol = 13Tlu + 1[. (6) 

Using vector coupling techniques the vibronic operator can be uncoupled to 
[25, 26] demonstrate the allowed combinations of electronic and vibrational 
transition operators which result in a strongly coupled octupole transition opera- 
tor for vibronic systems 

[DFoyo] = Y~ (-1) J(r~176 (2D 
+ 1) 1/2 

s, v, rj, r v h [FD] 

= y (-1)J(rl,)+v*(2(3) + 1) 1/2 

A [T~u] (7) 

after substitution from Eq. (6). Any values of L and V and any representations 
subduced from them, FL and Fv, which yield allowed couplings to 3 and T~ 
respectively may appear in this sum. The allowed combinations of L and V 
respectively which yield and overall octupole moment of the strongly coupled 
system are; 

monopole-octupole 
dipole-quadrupole 
quadrupole-dipole 
octupole-monopole 

IAL[ + IAVI = IADI = 3. (8) 

At least the first three of these combinations can be documented and two appear 
in the examples used in this work. The final combination, which would employ 
only the totally symmetric vibration, may appear as a perturbation of apparently 
weakly coupled systems. 

The internal modes of an octahedral molecule include vibrations of Alg, Eg and 
T2g active in the Raman, 2Tlu active in the infrared and T2u inactive [22]. Each of 
these modes can be identified with a representation V of the point group SU(3) by 
projection; 

V--~ Fv 

O~AI~ 

1 "-~ 7'1~ (antisym stretch) (9) 

2 ~ E ~ + T 2 ~  

3 ~ TI~ (twist), T2u 
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and the basis functions of each mode can be manipulated using group theoretic 
techniques operating on unique sets of labels [VFvyv).  

These selection rules apply only to the coupling of the electronic states with the 
first vibrational quantum. Since the vibronic transition octupole is ungerade in 
character, an allowed transition occurs only when one vector changes (g ~ u) or 
(u ~ g) while the other remains constant (g ~ g) or (u ~ u). This results in two 
distinct types of vibronic progression�9 For Laporte  allowed electronic transitions 
the vibrational quanta remain (g ~ g) assuming that no hot bands appear�9 Thus the 
successive vibronic intensities in this situation would reflect only the magnitudes 
of successive Franck-Condon factors. 

In contrast, Laporte  forbidden electronic origins require coupling of generade 
electronic excited states to ungerade normal modes in the absence of hot bands�9 
However  the even overtones of ungerade modes are gerade [27] and hence the 
even transitions in the vibronic progression are forbidden under the octupole 
operator.  This forbiddeness can be broken in second order by any molecular 
motions which destroy centres of symmetry but the successive intensities in the 
vibronic progression will be characterized by an alternation superimposed upon 
the envelope of Franck-Condon factors. The observation of an alternation on a 
Laporte  forbidden transition is therefore an indication of strong coupling to an 
ungerade normal mode. 

4.2. Applications to Complex Spectra 

(i) The Absorption Spectrum of the r ~ 4T2g Band in [MnF6] 2-. The order of 
importance of potential terms in the Hamiltonian of this complex can be assigned 
from the spectrum as 

L.F. > I.E.R. > Vib > L.S. .  (10) 

Ignoring spin-orbit  coupling, convenient bases for the resulting states can be 
identified as basis vectors [28] 

I(LFL, V r v ) D r o S r s T V r ) .  

In the present case AS = 0 and the coupling of the vibronic vector DFD with spin 
SFs to give the total vector TFT can be ignored. The selection rule is 

L 'F '  V'F '  D ' F '  , iLO~.O.rO~.O.-.o.o o, . . . . . . . .  L V- D~/D] I L V  IV1..1 I D ~ / D I L I L V I v L I I D T D )  

= ( -  1) J(rD+J(r~+~h*+J(r%+J(r~ 

(2D '+  1) 1/2 (2D~  1) 1/2 (2D + 1) 1/2 

A [r5] A[r ~ A [to] 

�9 c F v  ' * ] \ F  ~ 

. ( L  r ~ L V 

V o D O 

r o r o) 

Fv Fo)  

Yv T*D 
(11) 

"L'F'  ,,-OFO o , - . .  . , , , o o o �9 �9 V FvTv[VFvTv)  L ~ L I L  L T L I L I L T L )  ( V F v T v ]  
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in which the fully specified selection rule on the total vectors [DFDTD ) is written in 
terms of products of selection rules on the individual vectors tLFLYL) and 
] V F v y v ) .  The observed vibronic sequence can now be assigned by substitution of 
Eqs. (8) and (9) into (11). In brief, the absorption spectrum depends on the square 
of elements; 

(3Az~0Ai~3A2g014Tl~3 T~u3 T~uy~]3 T2~3 TI~DFT~TT) 

which depends in turn on the magnitude of products of matrix elements 

(3Azg0[4 T~. • 113 Tzg q: 1).  ( 0 a  ~g013 T~. • 1 [3 T1. :~ 1). 

By these rules a vibronic coupling involving 

(3A2g014Tl~ • 113 T2g :~ 1).  (0Alg0[1T~. + 111 T1. :7 1) 

should be equally allowed. However  the hexadecupole acts as a scalar for 
octahedral symmetry since the four fold axis is the highest order [25]. 

Therefore  an assignment L ~ = 4 "~ 
(12) 

is effectively equivalent to L ~ = 0 f 
Using this revised assignment, the term from (11) 

F ~ V~ F ~ = Tlg TI~ Tiu 

is allowed but the term; 

F~ F~ F ~ = Tlg T~u Tlu 

is forbidden [25]. Thus, there is a strong selection against the antisymmetric 
stretch in first order  for the observed spectroscopic band and indeed no sequence 
is this stretch or any combination of the two tt~ modes is observed. 

(ii) The MCD Spectrum o f  the 4A20--+(2Tlo, 4T20 ) Band o f  [Cr(H20)6] 3+. The 
order of potential terms again follows Eq. (10) but both the vibrational 
separation and the spin-orbit coupling constant are smaller in this case since the 
nuclear charge has been reduced from Mn 4+ to Cr 3+. The same basis functions 
may be used but since AS is not zero for the doublet state the complete coupling 
treatment will be needed. 

L 'F '  , , , , , , , , , o o ~.OFO,DOFO ,~o,~OTOFO o, (( L, V F~.)D FDS F s T  FTTTI(L FL, V V) Oa I s  TYT[ 

(LFL, VTv)DFDSFsTFTTT) 

, , , , , , , o o o o o o o L V F . D  =(LFLVF'vDFDTD[L FLV F~/D FDTD[ FL "r FDTO) 
�9 ( -  1) J(rfi)+J(r~)+'~4"*+s(rg)+J(r~)+~}*+J(r~')+J(rs)+vr 

( 2 T ' + 1 )  1/2 ( 2 T ~  ~/2 ( 2 T + 1 )  ~/2 

a[r ] a i r  ~ ] a [ r r ]  
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( D '  S '  T ' ~ ( F ~  F's r '~ (D ~ S o r~) 
�9 . . , . \  , , , . ) \ ~ o  o 

F'D F's l r/ "/ o ~' s ~' r l o F s F 

. ( r  ~ r~ r~  s T](FD rs rr) 
~ o  o o . ] \ r ~  rs r ~ / ~ D  ~s ~* 

f l r O O 0 
�9 S FsTs lS  Fs3~slSFs3~s). (14) 

in which the first matrix element in the expansion can be calculated from Eq. (11). 

The inclusion of a final coupling to spin does not change the physical constraints 
on the selection rules�9 The generative groups for the definitions of both L and S 
are SU(2). The coupling in Eq. (14) represents the outer product SU(2) x SU(3) x 
SU(2) for which the restricted diagonal subgroup in which [TFryT) is defined is 
again SU(3). The introduction of this third vector however requires an expansion 
of Eq. (8). The augmented selection rule becomes; 

IALI + IA VI + IASI = IATI : 3. (15) 

The MCD spectrum of [Cr(H20)6] 3+ has been analysed above in terms of 
predominant C terms [5] which depend on the product of the ground state 
magnetic moment with the square of the electronic moment [29]. For vibronic 
systems: 

3 
= Y. ( ( L F L V F v ) D F o S F s T F r y r I ( L " F ~ V ~ F ~ r  c(r~-~ r~) A[F~],~,~ 

D ~ F ~ S U F ~ T U F ~ y Y r l ( L F L V F v ) D F D S F s T F s T F r y r )  

�9 ((LFLVr,~)DrDSrsTFT~l(Lmr~v~F~)Dmr~smr'2TmF711 
t ! ! ? t t v ? t ! r (L FLV F~e)D F o S  F s T  FTyT) 

! t ! ! ! ? r r t ! ! �9 ((L FLV F~c)D FoS F s T  FTyTI 

. . . .  D m F  ~ ~ F ' * T  ~ ~ 1 �9 (L FLV F~) o S  s F r -  I 

( L F L V F v ) D F D S F s T F r Y T ) .  (16) 

Each term in this product can be expanded according to Eqs. (14) and (11) and on 
substitution back into (16) a product of three orbital with three vibrational and 
three spin matrix elements is obtained accompanied by the appropriate 3F 
symbols and partition coefficients. 

This expanded form of the C term can be used to assign both progressions in the 
aTlg, 4T2g region. The magnetic dipole is allowed so the discussion can be limited 
to electronic moments�9 The latter progression involves the tl u twist vibration and 
follows exactly the same analysis as the 4A2g--> 4T2g assignment for (MnF6) 2- in 
the previous section�9 The assignment of the 4A2g --> 2Tlg requires a spin change in 
addition to orbital and vibrational changes so that the selection rules for any one 



58 B . R .  H o l l e b o n e  

matrix element in (16) depend on products of matrix elements; 

(3AzgOl4Tzg -4- ll4Tlg ~: 1) 

(0AI,011 T~u + 1[1T~u w 1) 
3 I 0 1 r t (~U ~sll T~uys [~E y~) 

in which L ~ =4 again maps into L ~  0 according to Eq. (12). Since the tlu 
(anti-symmetric stretch) mode is now involved, the selection rule for these 
products from Eq. (15) becomes; 

[ALl + ]AVI + ]AS] = 1 + 1 + 1 = 3 (17) 

which again obeys the octupole rule for the overall transition moment. In this case 
the progression involving the tl.  (twist) mode is strongly forbidden since the 
partition coefficient; 

(oo ,o 1 3 / 
rOo r o = (18) s r r ~ Tlu Tlu 

in Eq. (14) vanishes [25]. 

5. Conclusions 

(i) The RSBO Basis Set. In two favorable examples of transition metal complex 
spectra in which vibronic progressions are readily identified, an octupole selection 
rule on the total projected representations has been sufficient to assign the 
observed band structure. A simple explanation of this rule has been derived here 
from the requirement of a fixed centre of mass during the excitation of internal 
modes of vibration in a molecule. The requirement can be quantitatively expres- 
sed using a projected set of Russell-Saunders Born-Oppenheimer (RSBO) basis 
vectors and transition moment operators which uniquely identify all electronic 
and vibrational states. The coupled vectors, which are defined in restricted 
diagonal subgroups of the original generic point groups, can be factored to 
provide scalar products of matrix elements for the individual orbital, vibrational 
and spin bases. These factored expressions can be used to calculate the number of 
permissable ways in which the overall octupole rule can be observed in specific 
cases. 

Neither the physical constraints nor the formalism used to express the intensities 
of transitions limit the analysis to special classes of transitl~ons. The concepts have 
been applied here to Laporte forbidden and in one case spin forbidden bands but 
could equally have been used for Laporte allowed systems. The identification of 
vibronic transitions in singlet to singlet and singlet to triplet transitions in organic 
substances should provide further tests of the usefulness of the proposed model. 

(ii) Applications to Photochemistry. These conclusions provide a basis for first- 
order predictions of photoreactions of the [Cr(H20)6] 3+ ion. The reaction model 
developed by Bader [30], Pearson [31] and Salem [32] relates the most probable 
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un imo lecu l a r  d i ssoc ia t ion  c o o r d i n a t e  of the  g r o u n d  s ta te  to the  s y m m e t r y  of bo th  
the  n o r m a l  m o d e  m o t i o n  and  the  nea res t  exc i t ed  e lec t ron ic  s tates .  T h e s e  same  
concepts  can be  used  in analysis  of the  r eac t ion  coo rd ina t e s  of  v ib ra t iona l ly  hot ,  
exc i t ed  e lec t ron ic  s ta tes  [33]. The  s imples t  r e l a t ionsh ip  b e t w e e n  r eac t i on  coor -  
d ina tes  and  n o r m a l  m o d e s  is a d i agona l  a n h a r m o n i c  coupl ing  mode l .  A t  this  level  
of  a p p r o x i m a t i o n  the  symmet r i e s  of the  m o l e c u l a r  m o t i o n  and the  r eac t ion  
c o o r d i n a t e  a re  ident ica l .  In  the  p r e sen t  case this impl ies  tha t  exc i ta t ion  of the  
[Cr(H20)6]  3+ complex  into  the  Zig and 4T2g t e rms  respec t ive ly  which  a ppe a r s  to 
l ead  to two d i f ferent  m o l e c u l a r  modes ,  the  a symme t r i c  s t re tch  and  the  angular  
d e f o r m a t i o n ,  wou ld  l e ad  in tu rn  to two d i f ferent  p h o t o c h e m i c a l  r eac t ion  coor -  
d inates .  The  first of these,  b a s e d  on a symmet r i c  s t re tching,  wou ld  l ead  to b o n d  
b r e a k i n g  and  a d issocia t ive  type  of subs t i tu t ion  reac t ions  t h rough  a five c oo rd ina t e  
square  p y r a m i d a l  i n t e rmed ia t e .  The  twis t ing m o d e  on  the  o t h e r  h a n d  tends  to 
open  the  faces  of the  o c t a h e d r o n  which could  l ead  to m o r e  c lear ly  associa t ive  
mechan i sms  t h rough  t r igona l ly  d i s to r t ed  in t e rmed ia t e s .  The  resul ts  could  inc lude  
subs t i tu t ion  or  rea l  o r  p s e u d o r o t a t i o n  of l igands.  

This  s imple  m o d e l  appl ies  on ly  to those  p h o t o c h e m i c a l  r eac t ions  which  b e c o m e  
pa tho log i ca l  shor t ly  af ter  exci ta t ion .  I t  cou ld  well  fo rm a useful  m o d e l  for  
r eac t ions  which  occur  wi th in  one  or  a few v ib ra t ions  bu t  b e c o m e s  less val id  as the  
v ib ra t iona l  exc i ta t ion  is lost  to the  sur roundings .  The  m o d e l  is also i n a d e q u a t e  if 
two o r  m o r e  v ib ra t iona l  m o d e s  are  s t rongly  coup led  o r  if the  r eac t ion  c oo rd ina t e  
d i f fered f rom these  n o r m a l  coo rd ina t e s  due  to a n h a r m o n i c  coupl ing.  
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